Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Hepatology ; 74(4): 1750-1765, 2021 10.
Article in English | MEDLINE | ID: covidwho-1274697

ABSTRACT

BACKGROUND AND AIMS: We compared risk of acute liver injury and mortality in patients with COVID-19 and current, past, and no HBV infection. APPROACH AND RESULTS: This was a territory-wide retrospective cohort study in Hong Kong. Patients with COVID-19 between January 23, 2020, and January 1, 2021, were identified. Patients with hepatitis C or no HBsAg results were excluded. The primary outcome was mortality. Acute liver injury was defined as alanine aminotransferase or aspartate aminotransferase ≥2 × upper limit of normal (ULN; i.e., 80 U/L), with total bilirubin ≥2 × ULN (i.e., 2.2 mg/dL) and/or international normalized ratio ≥1.7. Of 5,639 patients included, 353 (6.3%) and 359 (6.4%) had current and past HBV infection, respectively. Compared to patients without known HBV exposure, current HBV-infected patients were older and more likely to have cirrhosis. Past HBV-infected patients were the oldest, and more had diabetes and cardiovascular disease. At a median follow-up of 14 (9-20) days, 138 (2.4%) patients died; acute liver injury occurred in 58 (1.2%), 8 (2.3%), and 11 (3.1%) patients with no, current, and past HBV infection, respectively. Acute liver injury (adjusted HR [aHR], 2.45; 95% CI, 1.52-3.96; P < 0.001), but not current (aHR, 1.29; 95% CI, 0.61-2.70; P = 0.507) or past (aHR, 0.90; 95% CI, 0.56-1.46; P = 0.681) HBV infection, was associated with mortality. Use of corticosteroid, antifungal, ribavirin, or lopinavir-ritonavir (adjusted OR [aOR], 2.55-5.63), but not current (aOR, 1.93; 95% CI, 0.88-4.24; P = 0.102) or past (aOR, 1.25; 95% CI, 0.62-2.55; P = 0.533) HBV infection, was associated with acute liver injury. CONCLUSION: Current or past HBV infections were not associated with more liver injury and mortality in COVID-19.


Subject(s)
Acute Lung Injury/epidemiology , COVID-19/mortality , Hepatitis B, Chronic/epidemiology , Acute Lung Injury/blood , Acute Lung Injury/diagnosis , Acute Lung Injury/virology , Adult , Age Factors , Aged , Alanine Transaminase , Aspartate Aminotransferases , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Female , Hepatitis B Surface Antigens/isolation & purification , Hepatitis B virus/immunology , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/virology , Hong Kong/epidemiology , Humans , Male , Medical History Taking/statistics & numerical data , Middle Aged , Retrospective Studies , Risk Assessment/statistics & numerical data , Risk Factors
2.
Clin Lab ; 67(1)2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-1045294

ABSTRACT

BACKGROUND: Since December 2019, a series of pneumonia cases caused by COVID-19 emerged in Wuhan, Hubei Province, China. People are generally susceptible to COVID-19 because people lack immunity to this new virus. With the spread of this epidemic disease from Wuhan, a national outbreak soon appeared, and now many countries have this disease. Unfortunately, no effective drug for COVID-19 treatment has been found so far. METHODS: We designed a retrospective study based on patients admitted to The Affiliated Infectious Hospital of Soochow University from January 22, 2020, to February 25, 2020, with diagnosed COVID-19. We analyzed correlations between RT-PCR negative time and laboratory indicators, then divided all cases into 2 groups according to oxygenation index, data of RT-PCR negative time and related laboratory indicators of the two groups were com-pared. RESULTS: We collected 84 confirmed patients whose RT-PCR had turned negative, including 23 patients with the lowest oxygenation index ≤ 300 mmHg and 61 patients had > 300 mmHg. There was a positive correlation between the RT-PCR negative time and age, WBC count, LDH, SCr. There were statistically significant differences in fever numbers, WBC count, lymphocyte count, CRP, ALT, AST, albumin, LDH, SCr, D-dimer, and fibrinogen between the two groups based on the oxygenation index. CONCLUSIONS: Age, WBC count, LDH, and SCr may be related to the duration of COVID-19 disease. Fever, WBC count, lymphocyte count, CRP, ALT, AST, albumin, LDH, SCr, D-dimer, and fibrinogen are related to the severity of acute lung injury.


Subject(s)
Acute Lung Injury/diagnosis , Blood Chemical Analysis , COVID-19 Testing , COVID-19/complications , Acute Lung Injury/blood , Acute Lung Injury/virology , Adolescent , Adult , Aged , Aged, 80 and over , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , China , Creatinine/blood , Female , Fibrin Fibrinogen Degradation Products/analysis , Humans , Infant , Infant, Newborn , L-Lactate Dehydrogenase/blood , Leukocyte Count , Male , Middle Aged , Oxygen/blood , Predictive Value of Tests , Prognosis , Real-Time Polymerase Chain Reaction , Retrospective Studies , Serum Albumin, Human/analysis , Severity of Illness Index , Time Factors , Young Adult
3.
PLoS One ; 15(12): e0242318, 2020.
Article in English | MEDLINE | ID: covidwho-955356

ABSTRACT

The acute respiratory distress syndrome (ARDS) is characterized by intense dysregulated inflammation leading to acute lung injury (ALI) and respiratory failure. There are no effective pharmacologic therapies for ARDS. Colchicine is a low-cost, widely available drug, effective in the treatment of inflammatory conditions. We studied the effects of colchicine pre-treatment on oleic acid-induced ARDS in rats. Rats were treated with colchicine (1 mg/kg) or placebo for three days prior to intravenous oleic acid-induced ALI (150 mg/kg). Four hours later they were studied and compared to a sham group. Colchicine reduced the area of histological lung injury by 61%, reduced lung edema, and markedly improved oxygenation by increasing PaO2/FiO2 from 66 ± 13 mmHg (mean ± SEM) to 246 ± 45 mmHg compared to 380 ± 18 mmHg in sham animals. Colchicine also reduced PaCO2 and respiratory acidosis. Lung neutrophil recruitment, assessed by myeloperoxidase immunostaining, was greatly increased after injury from 1.16 ± 0.19% to 8.86 ± 0.66% and significantly reduced by colchicine to 5.95 ± 1.13%. Increased lung NETosis was also reduced by therapy. Circulating leukocytosis after ALI was not reduced by colchicine therapy, but neutrophils reactivity and CD4 and CD8 cell surface expression on lymphocyte populations were restored. Colchicine reduces ALI and respiratory failure in experimental ARDS in relation with reduced lung neutrophil recruitment and reduced circulating leukocyte activation. This study supports the clinical development of colchicine for the prevention of ARDS in conditions causing ALI.


Subject(s)
Acute Lung Injury/drug therapy , Colchicine/pharmacology , Lung/drug effects , Respiratory Distress Syndrome/drug therapy , Acute Lung Injury/blood , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Disease Models, Animal , Humans , Lung/pathology , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Oleic Acid/toxicity , Rats , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/pathology
4.
Exp Cell Res ; 394(2): 112101, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-633801

ABSTRACT

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are common lung disorders characterized by alveolar-capillary barrier disruption and dyspnea, which can cause substantial morbidity and mortality. Currently, a cluster of acute respiratory illnesses, known as novel coronavirus (2019-nCoV)-infected pneumonia (NCIP), which allegedly originally occurred in Wuhan, China, has increased rapidly worldwide. The critically ill patients with ARDS have high mortality in subjects with comorbidities. Previously, the excessive recruitment and activation of neutrophils (polymorphonuclear leukocytes [PMNs]), accompanied by neutrophil extracellular traps (NETs) formation were reported being implicated in the pathogenesis of ALI/ARDS. However, the direct visualization of lung epithelial injuries caused by NETs, and the qualitative and quantitative evaluations of this damage are still lacking. Additionally, those already reported methods are limited for their neglect of the pathological role exerted by NETs and focusing only on the morphological features of NETosis. Therefore, we established a cell-based assay for detecting NETs during lung epithelial cells-neutrophils co-culture using the xCELLigence system, a recognized real-time, dynamic, label-free, sensitive, and high-throughput apparatus. Our results demonstrated that lung epithelial injuries, reflected by declines in cell index (CI) values, could be induced by lipopolysaccharide (LPS)-activated PMNs, or NETs in a time and dose-dependent manner. NETs generation was verified to be the major contributor to the cytotoxicity of activated PMNs; protein components of NETs were the prevailing cytotoxic mediators. Moreover, this cell-based assay identified that PMNs from severe pneumonia patients had a high NETs formative potential. Additionally, acetylsalicylic acid (ASA) and acetaminophen (APAP) were discovered alleviating NETs formation. Thus, this study not only presents a new methodology for detecting the pathophysiologic role of NETs but also lays down a foundation for exploring therapeutic interventions in an effort to cure ALI/ARDS in the clinical setting of severe pneumonia, including the emerging of NCIP.


Subject(s)
Acute Lung Injury/blood , Coronavirus Infections/blood , Extracellular Traps/diagnostic imaging , Neutrophils/metabolism , Pneumonia, Viral/blood , Respiratory Distress Syndrome/blood , Acute Lung Injury/chemically induced , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/virology , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Extracellular Traps/virology , Humans , Lipopolysaccharides/toxicity , Lung/diagnostic imaging , Lung/virology , Male , Neutrophils/virology , Pandemics , Pneumonia/blood , Pneumonia/diagnostic imaging , Pneumonia/virology , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2
5.
Paediatr Respir Rev ; 35: 20-24, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-593671

ABSTRACT

Since the initial description in 2019, the novel coronavirus SARS-Cov-2 infection (COVID-19) pandemic has swept the globe. The most severe form of the disease presents with fever and shortness of breath, which rapidly deteriorates to respiratory failure and acute lung injury (ALI). COVID-19 also presents with a severe coagulopathy with a high rate of venous thromboembiolism. In addition, autopsy studies have revealed co-localized thrombosis and inflammation, which is the signature of thromboinflammation, within the pulmonary capillary vasculature. While the majority of published data is on adult patients, there are parallels to pediatric patients. In our experience as a COVID-19 epicenter, children and young adults do develop both the coagulopathy and the ALI of COVID-19. This review will discuss COVID-19 ALI from a hematological perspective with discussion of the distinct aspects of coagulation that are apparent in COVID-19. Current and potential interventions targeting the multiple thromboinflammatory mechanisms will be discussed.


Subject(s)
Acute Lung Injury/blood , Coronavirus Infections/blood , Inflammation/blood , Pneumonia, Viral/blood , Thrombosis/blood , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/physiopathology , Anticoagulants/therapeutic use , Antithrombins/therapeutic use , Betacoronavirus , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/physiopathology , COVID-19 , Capillaries/immunology , Capillaries/physiopathology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , Factor Xa Inhibitors/therapeutic use , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/physiopathology , Pandemics , Platelet Activation , Platelet Aggregation Inhibitors/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Pulmonary Embolism/blood , Pulmonary Embolism/immunology , Pulmonary Embolism/physiopathology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thrombosis/drug therapy , Thrombosis/immunology , Thrombosis/physiopathology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL